Tag Archives: San Diego Safari Park – San Diego

Mountain Yellow-legged Frog (Rana muscosa)

Mountain Yellow-legged Frog (Rana muscosa)_1

This is bad photo. It is, however, the best photograph I have been able to take of the Mountain Yellow-legged Frog.

This is a US species that has lost 90% of its population in the last century. It was already threatened by introduced fish and pesticides (turns out that when you spread around a substance to kill things, it kills things). Then chytridiomycosis arose and things got fairly dire.

When you visit various zoos, you see that many of them are involved in trying to preserve this species. It is, however, extremely rare to actually see them. Much of the conservation seems to be occurring behind closed doors. This makes sense when you have to keep things as small as spores out of exhibits, but it does mean that photos like this are the best you get.

Northern white rhinoceros (Ceratotherium cottoni)

I have been trying to write this post for over a year and I have to face the fact that I am just not a good enough writer to make it what I want.  So I’m just going to write.

Northern white rhinoceros (Ceratotherium cottoni)_75
This is Nola.

In January of 2015 I decided to fly to San Diego to see Nola. Nola was, at the time, one of five Northern White rhinos remaining on the planet. It wasn’t easy to figure out.

The San Diego Safari Park is structured like a normal zoo in some respects, but about half of it is not for people. They have a wide open expanse mimicking the African and Asian plains. The animals are free to wander and live their lives as they will. When you visit, you have two options to see them close up – cart or caravan. The cart winds its way around the edge, so you can see most everything, but far away. The caravan is a truck that goes out directly and drives a route through the middle of the plains, so you can see some things close up, but can’t see everything.

The problem is that there are places where neither the car nor caravan can go. This, of course, is where an old animal would choose to spend her time. So I needed another option.

That option was the Ultimate Safari. It’s not cheap, but it is exactly what I wanted.

Once I arrived, I met Alan Treadway, who was to be my guide for the day. The day consisted of many things specifically chosen to meet my interests. I got to see the cheetah breeding area (and pet a cheetah). I met an aardvark, kinkajou, and some singing dogs. I also met with some stem cell scientists who had 14 times as many Northern White rhinos frozen as stem lines as out on the plains. Then I got to feed two okapi(s), some Indian rhinos, and some sitatunga(s). Then, as the sun was setting low, we went out into the fields.

It took quite a while to get to where Nola was, but once we got there, I saw her.

Northern white rhinoceros (Ceratotherium cottoni)_129

She was sitting there, in the mud, looking completely alone. It was somehow fitting that she lived in a field with tons of other rhinos, but was still completely by herself. It was somehow poetic because globally, the Southern White rhinos have recovered quite well, living (through the help of breeding zoos) all over the world while their cousins, numbering only three, live in isolation.

I was looking at a species that, within the next few years, will have vanished entirely from the earth.

We drove around to get another angle.

Northern white rhinoceros (Ceratotherium cottoni)_1

I watched her lay there and realized that, while she was alone, it felt more like solitude than loneliness. She didn’t seem upset, or sad, or happy for that matter.

Then again, unless you’re actively giving them an apple, it’s hard to tell if a rhinoceros is happy.

Northern white rhinoceros (Ceratotherium cottoni)_106

However, she did seem to enjoy dipping her horn in the mud and oozing around a bit. I guess if you’re a well fed rhino on a warm day, laying about squelchylike may well be the extent of your desire. I took photos for a while and then stopped and just sort of watched her.

There are things you can notice when you take the time. A lot of people, when they think about rhinos, don’t think about the little tufts of hair on their ears, how their feet are built to support their weight, how their skin looks almost twice as big as it needs to be yet just falls into place as they move around. They don’t think about their tiny eyes. Naturalists talk about how rhinos can’t see very well, but their hearing is excellent and their nose is amazingly sensitive – not surprising, given how big it is.

As Nola sat, and I watched, I saw that she was alert. Her ears and nostrils were in constant movement. Then, just as thought I had seen everything there was to see …

Northern white rhinoceros (Ceratotherium cottoni)_13

… she stood up.

The light had changed and the sun was near the horizon. I am not so naive as to think that she was posing for me, but truly, the light was perfect.

Then, to my surprise, she walked nearer. She wasn’t running, just slow, steady, methodical walk over to the truck.

In the movies, when something heavy walks, the camera jumps with each step and the speakers play a low bass thump. Everyone remembers the ripples in the water in Jurassic Park.

In real life, none of that happens, of course. However, you can sense mass. Rhinoceroses are huge. They can weigh up to six tons – twice the size of an average car. A rhino running a full speed (30 mph) would hit with the same force as a car going 55mph. When something that size comes towards you, even if you’re in the back of a big heavy truck, you notice.

As she came nearer, I stepped away from the camera with the big lens and picked up the spare with the wide lens, as it can focus more closely. I leaned out to get a shot as she came closer, thinking that it was going to be the best and closest shot I’d be able to get.

Then I put the camera down.

With Alan’s permission, I reached out to touch Nola, one of the last of her kind, the only Northern White rhino in the northern and western hemispheres, as she stopped by the truck.

She was rough, covered in mud, and felt like a boulder. But she was also warm and alive. I touched her back as she walked past and I felt like time itself, sliding over muscles and sinew, soon to be gone, never to return.

Northern white rhinoceros (Ceratotherium cottoni)_44

I got one last shot as she wandered off and my time there came to an end.

Nola died on November 22nd, 2015 … one month before my return trip.

Overthinky Guar (Bos gaurus)

Guar (Bos gaurus)_11

Wikipedia contains the following line: “While gaur depend on water for drinking, they do not seem to bathe or wallow.”

Let’s overthink about that for a minute, with differing emphasis.  (Lots of links. If you’re on FB, click the link (not the picture) to see the full post.)

1) “WHILE gaur depend on water for drinking, they do not seem to bathe or wallow.”
In most cases, the world “while“, refers to a period of time. However, it can refer to a contrast, but not the in the immediate time. The word “while”, referring to a period of time, can itself last for the entire first half of a sentence to see the contrast coming and then refer to it. This means that, at some point in humanity’s fast, we felt the need to create time-traveling conjunctions. What a world that must have been

2) “While GUAR depend on water for drinking, they do not seem to bathe or wallow.”
This implies that other animals do not depend on water for drinking, otherwise guar would not need to be singled out. This, as it turns out, is true. It is well known that desert animals like kangaroo rats and sand cats, get water from their food. However, some research also uncovered the interesting fact that mealworms also have this ability.

Now, when people say things like “an animals gets all the water it needs from its food”, it’s common to think of foot like sponges. After all, when you eat a piece of fruit, you know there’s water in there, so mechanically separating it from the food and not needing to drink makes sense. But there’s another way!

The Malpighian tubule system or cryptonephridial system moves some organs around and changes how wastes are processed through diffusion and active pump mechanisms, effectively separating urea, amino acids, sodium, and potassium from water. The water is then re-abosrbed. This is chemical* separation of water from the food and is a much older mechanism than the animals with which we are more familiar.

* It may not be technically “chemical”, as they may just be pulling out atoms and molecules dissolved in water. If this is the case, I am sure the Internet will correct me, because it’s good at that.

“While gaur DEPEND ON WATER for drinking, they do not seem to bathe or wallow.”
Can animals drink things other than water, in a “depends on” sort of way? Sure, we talk about hummingbirds drinking nectar, and baby mammals depend on milk to survive, but is there anything out there that doesn’t, at some point in their life cycle, need water?

It turns out that, thus far, the answer is no. All known life on Earth has DNA and, in order to replicate, DNA requires a polar solvent. Since one requirement for life to be considered life is replication, a polar solvent is needed for life. While there are other polar solvents available, no currently-known form of life uses them. This makes sense, given the ubiquity of water where we live.

However, ammonia is a potential alternative molecule*. It is polar and stays liquid at a lower range of temperatures than water does. So, on planetoids further away from their sun, it is certainly possible. However, the lower temperature does mean that, statistically, it would take substantially longer for life to arise and the fundamental question is whether they could make the jump to multi-cellular life before their sun burnt out.

Silicon, the popular option in science fiction, doesn’t look very likely because of temperature issues. Silicon has to get extremely hot, thousands of degrees (Celsius or Fahrenheit, doesn’t matter, you’d be dead) to become liquid. It is uncertain what would bond with it at that temperature to create biological molecules. Carbon and oxygen, of course, are right out.

Another option is hydrocarbon-based life. Such chemistry would not be polar, but it may be possible that lipid-based life could evolve. Again, this could work in a low-temperature environment, so multi-cellular life would face the same problem as in the ammonia scenario.

Hydrogen fluoride has also been suggested, though it seems to be rare in the universe.

On Earth, it took almost three billion years for single-celled life to become multi-cellular and, once they started, it suddenly happened independently in around twenty different lineages. It is believed that an uptick in oxygen created by cyanobacteria pushed oxygen levels to a point where they could not be absorbed into rocks and dissolved into water and, suddenly, there was enough oxygen in the environment that it could be absorbed by many layers of cells, so organisms that theoretically could have become multicellular at any point before suddenly gained a competitive advantage by doing do. So, if our goal is to meet intelligent life forms, which would likely need some level of multicellularity, we should probably keep looking for water. Ammonia and hydrocarbon-based life would likely need more time than our solar system has given them thus far (and is likely to give), and silicon-based life would be so hot that we likely wouldn’t have much to really talk about.

So, if we are going to find aliens, odds are that they would have similar biology to us. Sure, their DNA might use different bases (though research in artificial DNA is proving quite difficult), but they’re likely to need carbon, hydrogen, and oxygen in a water-based environment. The good news is that we’d have a lot in common. The bad news is that we wouldn’t have immunity to the single-celled organisms cooperating with their multicellular structures, nor would their have immunity to ours.

Which may be why they haven’t visited yet.


* Go ahead and search Wikipedia for “hypothetical”. Weeks of interesting reading, right there.

“While gaur depend on water for DRINKING, they do not seem to bathe or wallow.”
Most animals that we typically think of when we think “animal” need to drink, or “ingest water orally”. Sure, there are some, as mentioned above, that ingest water orally in the form of food, but what other ways are there to get water?

Fish are the obvious place to start. Do fish drink? Well, it turns out that the answer is “yes and no”.* Freshwater fish absorb the water they need directly through their skin and gills. Saltwater fish, however, gulp in water and then their gills filter the salt out. So, if you are watching a fish opening its mouth under water and it’s a salt-water fish, it’s drinking. If it’s a freshwater fish, though, it’s likely breathing (bringing in water to push out through its gills).

Amphibians also absorb water through their skin, particularly through ventral patches that contain aquaporin. Aquaporin are basically channels in cells that allow water to flow through them. This is basically the “plumbing” of cells. Interestingly, since salt water fish predate fresh water fish, this means that fresh water fish likely evolved these channels from internal water “piping” to external, because evolution greatly prefers recycling to creation.

However, to absorb water through your skin, you need to expose your skin, and skin exposed to water is also skin exposed to predators. Is there a way to protect the skin and still be able to drink through it?

The answer is yes!

The thorny devil lizard drinks through its foot, but has scales. It is believes that the scales perform a wicking function pulling water up to the sensitive skin regions … though in this case, those regions are … in the mouth.

That’s right. There are channels in the scales that pull water from the lizard’s foot, or head if dew is collecting, all the way up it’s body into its mouth. Those little lizards beat humanity to the crazy straw by several million years.


* So drinking like a fish may or may not indicate overconsumption. You might just like wearing cocktails.**

** Is that where cocktail dresses came from?


“While gaur depend on water for drinking, they DO NOT SEEM to bathe or wallow.”
An interesting personal note. I’ve always been interested in biology, but really, I have a deep-run desire to know why things are the way they are. As a kid, reading Thornton Burgess stories, it was biology. When I was about twelve and reading the encyclopedia (Yes, I’m a geek, but not a total geek. I got tired and stopped somewhere in the middle of “S”.*), the interest shifted to chemistry, as that is what biology was built on. In high school, this became physics, as that is what chemistry was built on. That lasted until graduation when I ran out of studies and had to start working. After some stagnation, I started noticing the same sort of patterns I’d seen in biology, chemistry, and physics in the working world.

That led to my self-driven studies into economics and psychology or, as I think to think of them, the study of the why people are they way they are. We basically live in a world of tiny things, be they particles, waves, strings, or as I like to think of them, little blobs of jello. These little things work together in ways that are described by quantum physics. The things they build are described by atomic physics. The things those build are described by chemistry until they start to do things on their own. (If they don’t do things on their own, they just keep getting bigger until relatively happens) That’s where biology comes into play. When the biological things become selfish, economics appears and when they start to deliberately manipulate others selfish things, psychology describes that. Math, of course, is a tool used to describe patterns at all these levels.

One thing that is interesting about the universe is that what is “seems to be” at one level is entirely explained at another and entirely irrelevant at yet another. To truly understand a problem, you have to consider it at multiple levels.

* The “S” volume was really heavy.

“While gaur depend on water for drinking, they do not seem to BATHE or wallow.”
Bathing is interesting. Throughout much of history, humans have bathed in different ways, but mostly in water and soap has been used erratically. However, many animals take dust baths. Rhinoceroses and elephants take mud baths, where the mud forms a protective layer over the skin and, as it flakes off, take away parasites and other irritants. Fish will have these removed by getting other fish to eat off their skin and, in some cases, by swimming up to a shark and rubbing their bodies against their sand-papery skin.

Wallowing, on the other hand, is apparently subtly different enough from bathing that we need a different word for it, though both come from the German language. For example, while both involve submersing yourself, only bathing requires a liquid. You can wallow in mud and you can bathe in mud. However, while you can bathe in the blood and tears of your enemies, you can only wallow in sadness and melancholy. Interestingly, if you do a word fight with these, you’ll see that “bathe” is older and generally more popular. However, sometime in 1625, there was apparently a bathing war and wallow became significantly more popular until bathe fought a counter offensive in 1650 and beat wallow back down. Wallow had a brief resurgence in 1675 before bathe won once again and has kept wallow in a subservient position ever since.